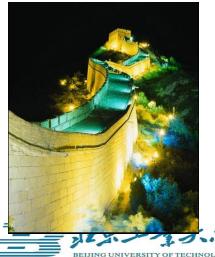
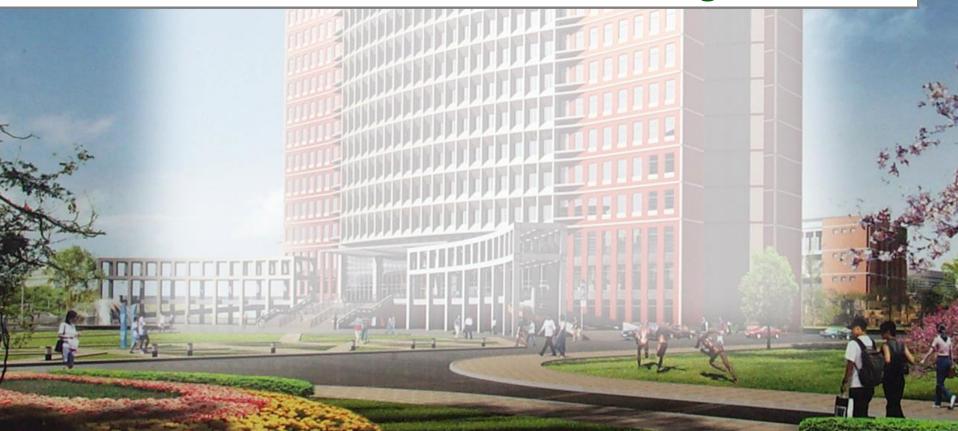


Solid waste management in China & Community Carbon Emissions in Beijing

Chen Sha


Spring.21.2014



- Brief introduction of BJUT and college of EEE
- Municipal Solid waste management in China
- Community Carbon Emissions in Beijing

Brief introduction of BJUT and college of EEE

About BJUT

Beijing

- > 3,000 years history
- Population: more than 21 million
- Areas:16,808 km²
- Center of national politics and culture
- Center of international communication

木樨园桥

Center of technology innovation

About **BJUT**

Founded in 1960

- 21 schools or colleges
 - Electromechanical Engineering
 - Electronics and Information
 - Computer Science and Technology
 - Building and Civil Engineering
 - Environmental and Energy Engineering
 - _

More than 16,000 Bs students and 5,000 Ms PhDs


BSL-3 (Bio-safety) lab

Laser technology research center

Key lab of new functional materials

Anti-seismic lab

学

College of Environmental & Energy Engineering

- Founded in 1999
- 6 departments and 1 Experiment Centre
 - Environment Engineering
 - Environmental Science
 - Chemistry & Chemical Engineering
 - Cryogenic & Refrigeration Engineering
 - Internal Combustion Engine and Vehicle Engineering
 - Environmental Energy Engineering Institute
 - Chemistry Experiment Centre

■ Covers chemistry, environment and energy

About 120 stuff

- 75 faculty members
- 700 undergraduates
- 400 graduates
- Annual research funding: RMB 40 million(2013)

■ <u>4 PhD programs</u>

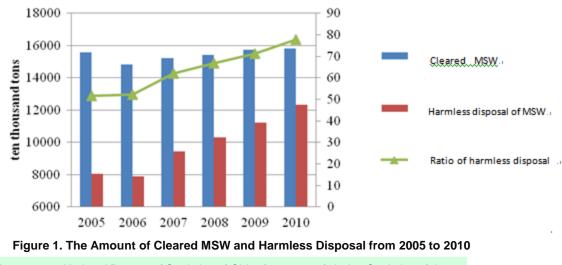
- Environmental Engineering
- Environmental Science
- Thermal Engineering
- Applied Chemistry

- <u>6 master programs</u>
 - Environmental Engineering
 - Environmental Science
 - Thermal Engineering

- Cryogenic and Refrigeration Engineering
- Chemical Engineering and Technology
- Physical Chemistry

- <u>4 bachelor programs:</u>
 - Environmental Engineering
 - Environmental Science
 - Applied Chemistry
 - Thermal Power Engineering
 - Refrigeration and Cryogenic Engineering
 - Vehicle Engineering
 - Renewable Energy Technology

MSW management and recycling in China



The characteristics of MSW in China

The largest amount of municipal waste generation in the world, but the development of disposal and treatment of MSW is relatively backward.

Resource: National Bureau of Statistics of China(2005-2010). Index Statistics of the national Household Garbage.

In 2010, cleared MSW was 158 million tons while the counties and town's garbage was more than 7million tons, which increased at 8%-10% rate per year and by 2030 this amount is projected to be at least 585 million tons.

Before the waste is collected and transported by the sanitation sector, some of the higher value waste is diverted through two ways:

1.Collected and sold by units and residents ,such as some package waste, waste paper and books.

2. Scavengers collect valuable wastes from the garbage bins or packaging centers.

It was estimated that recyclable wastes accounted for 10–15% of the total amount of cleared MSW.

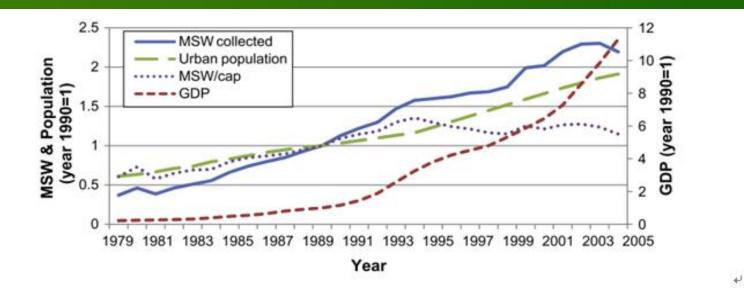


Fig2. Relation of collection of MSW with the population growth and GDP[]+

Waste Management. 30. pp. 716-724

After 1990, the impact of the population on MSW is far greater than the impact of GDP, which is mainly a result of increasing municipal waste recyclable.

The average MSW generation in big cities in China is about 1.0-1.5kg per capital per day.

- This unprecedented increase in waste generation is also adding a significant financial burden to cities' budgets. Based on current solid waste plans, China faces a potential 10-fold increase in its countrywide waste management budget by 2030, going from a currently estimated RMB 50 billion to about RMB 500 billion.
- In 2030, if China were to provide waste management services comparable to those in Organization for Economic Co-operation and Development (OECD) countries, annual estimated costs would be approximately US\$77 billion, of which half would be used for collection and half for disposal.

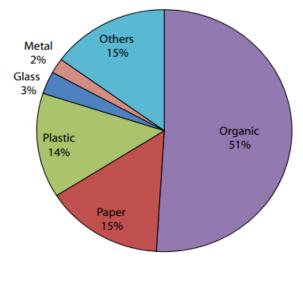


Fig. Projected MSW Composition in Urban Areas of China, 2030 (585 million tons)

Source: World Bank 2005.

<u>The amount of new types of solid waste is dramatically increasing, but</u> <u>lack of efficient treatment and management system.</u>

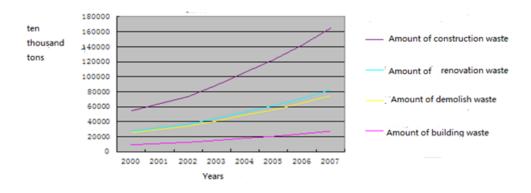


Fig.6 The increase of construction and demolish waste in China from 2000 to 2007+

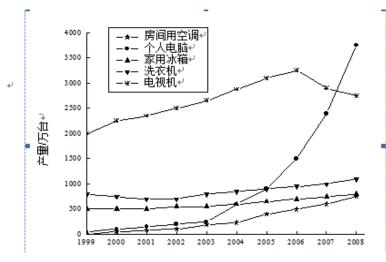
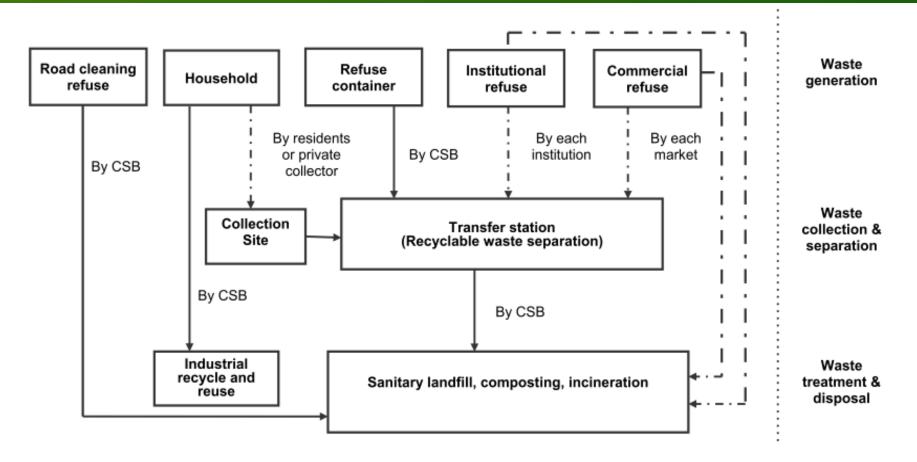


Fig.3 The amount of waste electrical and electronic equipments

Fig.5: The Treatment Quantity of wastewater and amount of sludge generation from 2004 to 2011+

The disposals of MSW in China

 Urban waste disposal methods are divided into three kinds : landfill


Composting

Incineration

- Except counties, two thirds of the cities among more than 600 cities are surrounded by garbage, and a quarter of them has no suitable place to stack waste.
- Till 2010, urban garbage treatment rate has reached 71.6%, but garbage in second- or third-tier cities, its treatment rate is estimated about 40%, lower 40-50% than first- tier cities.
- Statistics according to garbage treatment volume, landfill, composting and incineration accounted for 81.7%, 2.7% and 15.6% respectively; according to garbage removal volume, landfill, composting and incineration rates were 50.4%, 1.6% and 9.6% respectively.

Collection through CSB (City Sanitation Bureau) Collection through private agency

Year≠	2003¢	2004.	2005∉	2006	2007.	<mark>2008</mark> ₽	ت¢2009	2010¢
Landfill Site∂	457₽	444₽	356₽	324₽	366 ₽	407 ₽	447₽	<mark>498</mark> ₽
Compost Plant₊ ²	70 ₊∍	61.0	46 ₄∍	20₽	17₽	140	16 ₽	11@
Incineration Plant ⁴⁷	47₽	54₽	67₽	69₽	66 ₽	74₽	<mark>93</mark> ₽	104₽
total₽	575₽	55 9 ₽	471₽	419₽	460 ₽	5 09 ₽	567₽	<mark>628</mark> ₽

Table : The Quantities of Landfill Sites, Plants of Compost and Incineration from 2003 to 2010



Fig.3: The Treatment Quantity of MSW from 2003 to 2010.4 $\!\!\!\!$

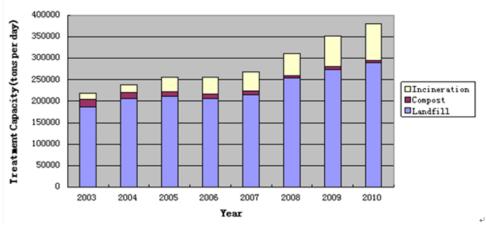


Fig.4: The Capacity of MSW Treatment from 2003 to 2010

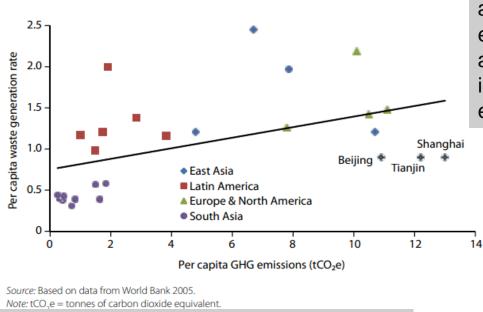


Fig. Per Capita Waste Generation Rate and GHG Emissions

Global estimates suggest that solid waste accounts for 5% to 10% percent of carbon emissions generated within a city boundary, and embodied emissions—or "up-stream" impacts—associated with solid waste are even more significant.

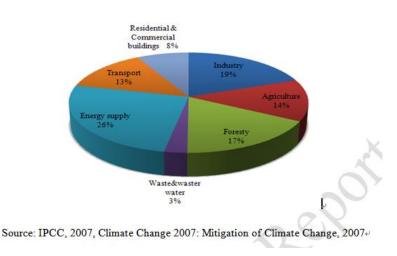


Fig. Greenhouse Gas Emission by Sectors

E-waste management & recycling in China

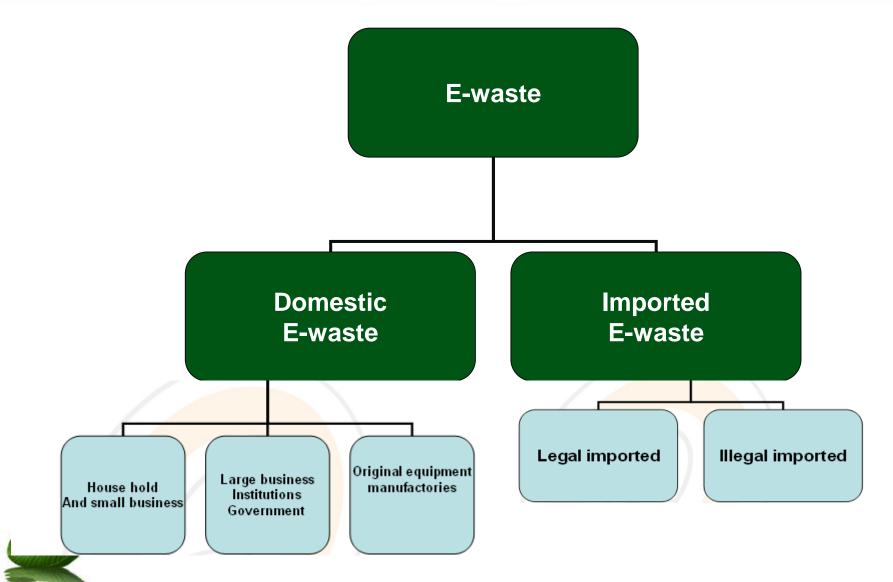
- Definition and generation of E-waste in China
- > E-waste recycling and disposal processes in China
- Challenge of E-waste management in China

E-waste categories in EU

N	o. Category	Label
1	Large household appliances	Large HH
2	Small household appliances	Small HH
3	IT & telecommunications equipment	ICT
4	Consumer equipment	CE
5	Lighting equipment	Lighting
6	Electrical and electronic tools (with the exception of large scale stationary industrial tools)	E&E tools
7	Toys, leisure and sports equipment	Toys
8	Medical devices (with the exception of all implanted and infected products)	Medical equipment
9	Monitoring and control instrument	M&C
A.		

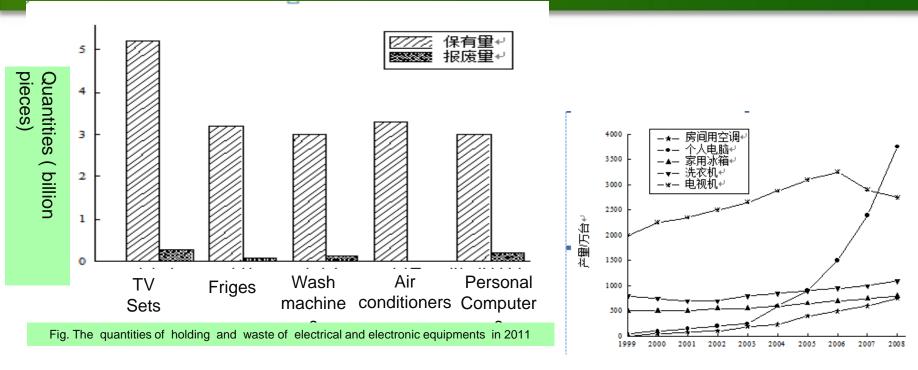
Clear categories list is unavailable

- ---Home appliances
- ---Personal computers and mobile devices
- ---Business electric and electronics
- ---Industrial electric and electronic equipment


---others

Current policies focus on home appliances and PCs ---TV, Refs, WM, AC, PCs.

E-waste generation in China

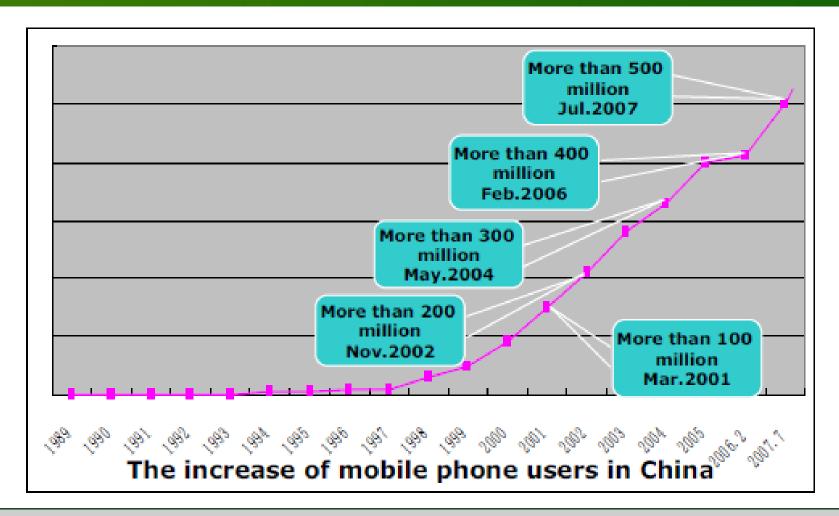


obsolete main electronic appliances in China

Source: Report of "Urban Mining" (2012)

Fig. The amount of waste electrical and electronic equipments

Product	Lifetime (years)
TV sets	8
Refrigerators	9
Washing machines	9
Air conditioners	10
Personal computer	<u>5 in 1993 & 3.5 in 20</u> 03


Table. The predicted Data of Domestic electronic equipments & computers

له	Quantities of Waste per year (Unit: ten thousand pieces)					¢
Year₽	TV Sets₽	Re ^f rigerator <i></i> ₽	or∂ Wash Air		Personal	¢
			machine₽	conditioner.	Computer	
2013.	4041.73 ₽	2094.18 ₽	1374.37 ₽	3875.04	24251.37	¢
2014.	4251.48 ₽	1242.00 ₄ 0	673.12 ₽	2992.61 *	90491.88	¢
2015	4449.13 ₽	1714.78 ₽	1519.46 ₽	3250.11 ₽	80904.88	<-

Source: Report of "Urban Mining" (2012)

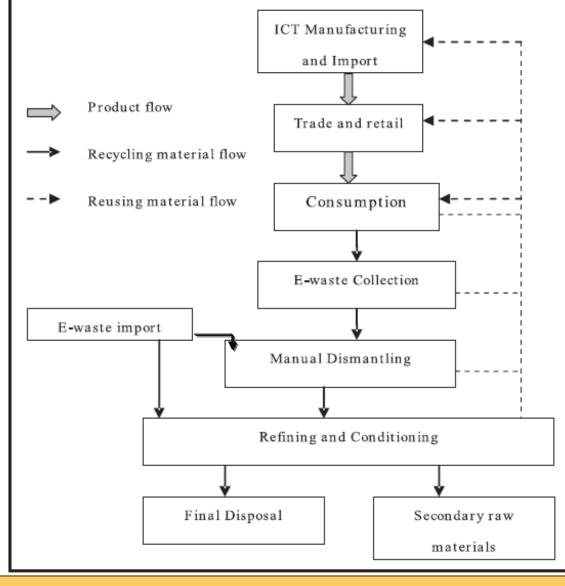
Source: Report on E-Waste Issues Related to Mobile Telecommunications in China (2008)

Imported of E-waste

Imported E-waste puts more pressure on Chinese E-waste management

Not clear how much E-waste is imported from other countries

Japan


Europe

USA

Shanghai

Hong Kong

E-waste recycling and disposal processes in China

Material flow of e-waste recycling in China

Table. Material composition and ratios(%) of typical domestic e-waste

	Matarial	TV Cata i		Wash	Air
	Material ₽	TV Sets₽	refrigerator₽	machine⊷	conditioner
	Steel₽	10 ¢ ²	50₄	53₽	55₽
	Cupper₽	3⊷	4₊⊃	4 ₊	17⊷
	Aluminum	2₄್	3⊷	3⊷	7₽
	Plastics ₽	23↩	40₄	36⊷	114
	Glass₽	57⊷			~⊽
	others.	5⊷	3⊷	4₊⊃	10+
					<u> </u>

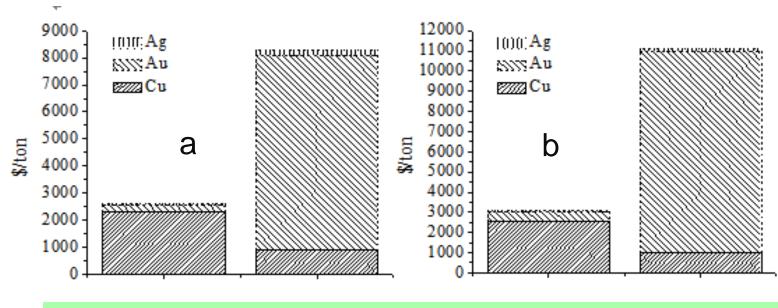
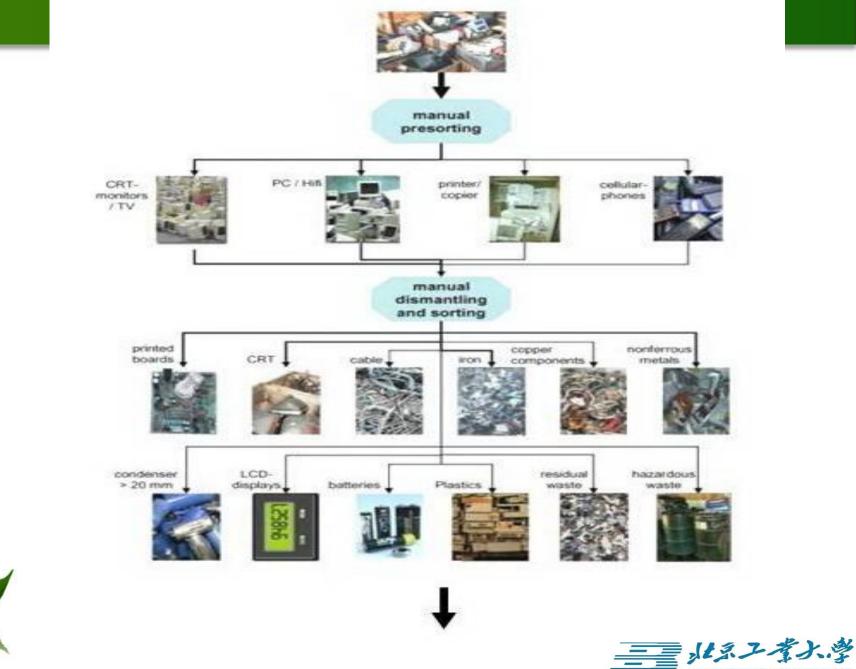



Fig. the value comparison of metals contained in the copper concentrate and a mobile phone between 2008 and 2010 (a: 2008; b: 2010)

Peddlers Collect the E-Wast

Manual dismantling

Guiyu: The largest e-waste collection and distribution center, dismantling and recycling e-waste and plastic about 1,550,000 tons

- Empoloyee: More than 60 thousands
- Private enterprises: more than 300
- Money: more than 2.0 billions

E-waste management regulation in China

Law of circular economy promotion(2009)

Law of solid waste pollution prevention and control(2005)

Law of clean production promotion(2003)

Ordinance on recycling and treatment of discarded electric and electronic appliances(2011) Management measures for prevention and control of pollution of IT products(2007) -Document on environmental management WEEE(2003) -Regulation on the list of forbidden import goods(2002) -Technical policy of prevention &control E-waste pollution (2008)

Improving the E-waste management

To establish formal collection systems

To establish a recycling certification system

绿色社区回收粤

To set up special National Fund

National pilot projects for domestic E- waste management

- To set up and support E-waste management institutions and policies.
- To set up a collection network for domestic E-waste.
- To help develop standards and regulations for E-waste management.
- To develop key technologies and equipments for E-waste recycling

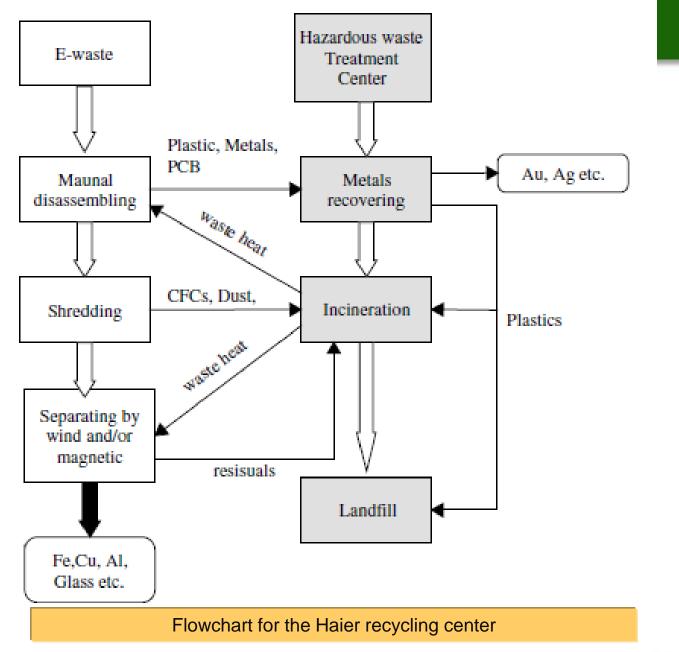


Fig. Large-scale E-waste recycling facilities in China.

Community carbon emissions in Beijing

Context

About Beijing **Population**: more than 2.1million **Areas:** 16.801 km²

Modern city with a long historyNational political and cultural center

- International exchange center
- Technology and innovation center

◆To reduce CO2 emissions of per GDP to 40-45% from 2005 level till 2020;

◆To significantly reduce energy consumption intensity and CO2 emission intensity and effectively control greenhouse gas emissions.

◆It was reported about 30% CO2 emissions in China from residential life.

BEIJING UNIVERSITY OF TECHNOLOGY

About the chosen community

Area: 87,318 m²
Residents in flat: 1,700 persons
Residents in Building: 1,799 persons
Households: 1180

Methodology of community carbon emissions

•The geographic boundary of the community being taken as the assessment boundary;

•CO₂, CH₄ and N₂O, mainly relevant to the residential life in community, carbon emissions of community were expressed in equivalent tons of CO₂ (kgCO2-eq);

• Data were surveyed about the electricity consumption (including the public electricity in community), gas consumption, heating consumption and wastes generation (including household garbage and waste water) in 2010.

CCEM was formulated as follows:

$$EM = \Sigma (F_i * k_{ij} * EF_j)$$

Where

EM: the community carbon emissions, $kgCO_2$ -eq.

 F_i : quantity of various carbon emissions sources or carbon sinks(i) , its unit could be kwh, m²,kg or km.

 k_{ij} : factor of carbon emissions / carbon sink of j from i, the unit could be kg/kwh, kg/m², kg/kg and kg/km.

 EF_i : The characteristic factor of j , kgCO₂-eq/kg.

Greenhouse gases	Characterization factor	unit
CO ₂	1	
CH_4	25	kg CO ₂ -eq
N ₂ O	298	

Table 1 The global warming potential of three greenhouse gases

types			data	unit
	Electricity	Building Bungalow	1,119,664.35 923,407.18	luude /a
Energy	Electricity	Public electricity	500,000.00	kwh/a
consumption	Gas	Natural gas	92,583.48	kg/a
	Ous	LPG	82,822.38	Kg/u
	Heating	Construction area	38,600	m^2
	Bus		1,033.98	
	Subway		617.70	
	Taxi		135.19	
Transport	Private car	Trip distance per capita	1,530.76	km/a
	Train	cupitu	1,347.68	
	Long-distance bus		887.62	
	airplane		876.78	
Waste	Domestic sewage	Water consumption	102,408.94	t/a
waste	Domestic garbage	Production amount	1,468.71	t/a
Public greenbelt		Areas	3,193	m ²

Table 2The survey basic data of the community

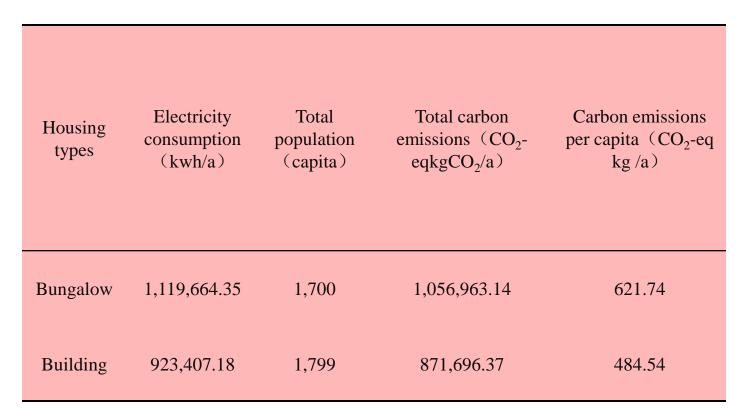

Carbon e	emission/neutral	factors	units
E	lectricity	0.944	kgCO ₂ -eq/kg
Gas	LPG	2.531	ltaCO ag/lta
Gas	Natural gas	2.761	kgCO ₂ -eq/kg
	Heating	27.502	kgCO ₂ -eq/m ²
	Bus	0.037	
	Subway	0.063	
	Long-distant bus	0.019	
Transport	Train	0.062	kgCO ₂ -eq/km
	Taxi	0.164	
	Private car	0.152	
Airplane		0.069	
Dome	estic garbage	2.059	kgCO ₂ -eq/kg
Dom	estic sewage	6.663×10 ⁻⁴	kgCO ₂ -eq/kg
Public greenbe	elt (carbon neutral)	-7.917	kgCO ₂ -eq/m ²

Table 3 Carbon emission/neutral factors

Table 4 Carbon emissions from electricity

Table 5 Carbon emissions from gas consumption

Gas types	Populati on (capita)	Consumpt ion (kg)	Total carbon emissions (kgCO ₂ -eq/a)	Carbon emissions (kgCO ₂ -eq/a)
LPG	1,700	82,822.38	209,623.45	123.31
Natural gas	1,799	92,583.48	255,623.00	142.09

Table 6 Carbon emissions from transport

		bus	Subway	Taxi	car	Train	Long- distance bus	Airplane	Σ
	carbon emissions (kgCO ₂ - eq/capita/a)	38.26	38.91	22.17	232.63	83.56	16.86	60.50	492.89
1.14							1		ンなよ。 versity of technology

				•	on emissior	0002-	_{eq} /capita/a)	Dublic	
		Electric ity	gy consur Gas	Heating	transpor t	sewage	aste garbag e	Public greenbelt (carbon neutral)	Σ
	Bungalow	619.44	123.31						2, 268. 2
	Multistory Buildings 756.64 142		4 142.09 590.09				864.27	-7.22	2,702.3
waste 32.62% energy consumption 49.19%					No	ste 64 %		energy consumption 39.50%	L
	transport 18.19%		energ trans waste				transport 21.66%	 energy co transport waste 	

Fig.1 Carbon Emissions in the Multistory Buildings

Fig. 2 Carbon Emissions from the Residents in the Bungalows

The community carbon emissions were 2,702.3 and 2,268.2kgCO2eq/capita/a in multistory buildings and bungalows, respectively.

The largest contributor to CO_2 emissions in this community resulted from energy consumption. Because of more coal used in the heating system in the multistory buildings, the carbon emissions in the buildings were 434.11kgCO2eq/capita/a more than those in the bungalows.

>In addition, the carbon emissions from the community public services accounted for almost 12.02% of the total energy consumption, so it is one of key points to reduce the public electricity consumption in terms of reducing community carbon emissions.

>The carbon emissions from the waste accounted for 35.73% of the total community carbon emissions, because most all of garbage went to the landfill.

➤The carbon emissions from the transport were comparatively lower than those of reported cities.

➤The community greening rate was 3.66%, and green area of per capita was only 0.92m², which were much lower than the average greening rate 43% and 12.6m²/ capita of Beijing city.

➢The characteristics of the community carbon emissions was different from those in Biggar community, locating in Scotland South Lannark Shire. The greatest source of carbon emissions in Biggar resulted from transport, whereas energy consumption was the largest in Beijing community. The energy carbon emission factor in Biggar is lower than it in Beijing community due to the more clean energy used and higher energy efficiency; The waste generation of per capita was 23% higher in Biggar compared to it in Beijing community, but its carbon emissions from the waste were only 42.56% of those in Beijing community.

♦ To improve waste treatment

Table 8 The potential efficiency of carbon emissions reduction by improving the waste treatment

Actions 50% 20% Amount of community garbage $137.26t$ Carbon emissions reduction $82.35tCO_2$ -eq $19.22tCO_2$ -eqAmount of urban waste of Beijjng 619.5×10^6t Amount of carbon emissions Reduction 3.717×10^6tCO_2 -eq 8.673×10^5tCO_2 -eq			Recovery the landfill gas	, Th	e incineration to power generation	
garbage $137.26t$ Carbon emissions reduction $82.35tCO_2$ -eq $19.22tCO_2$ -eq Amount of urban waste of 619.5×10^6t Amount of carbon emissions 3.717×10^6tCO_2 -eq 8.673×10^5tCO_2 -eq	Actions		50%		20%	
Amount of urban waste of Beijng $619.5 \times 10^{6}t$ Amount of carbon emissions $3.717 \times 10^{6}tCO_{2}$ -eq $8.673 \times 10^{5}tCO_{2}$ -eq		nity		137.26t		
Beijing Amount of carbon emissions $3.717 \times 10^{6}t$ CO ₂ -eq $8.673 \times 10^{5}t$ CO ₂ -eq	Carbon emissions r	eduction	82.35tCO ₂ -eq		19.22tCO ₂ -eq	
$3717 \times 10^{9} \text{CO}_{2}$ -eq $8673 \times 10^{9} \text{CO}_{2}$ -eq		vaste of		619.5×10 ⁶ t		
		emissions	3.717×10 ⁶ tCO ₂ -eq		2 1	

BEIJING UNIVERSI

To increase the community greening rate and reduce energy demand

✓ The greening ratio of the community is increased from 3.66% to 40%, the average greening areas of Beijing, the carbon offset from the green lands will be 306.2tCO2-eq/a.

 ✓ It was reported that the heating energy consumption of per unit area in China was about 3 times as it in developed countries in the same climate condition.
 Thus, there is a huge potential for energy demand reduction in communities.

To optimize energy structure

 \checkmark In 2012, the coal consumption was about 23million tons in Beijing, accounting for about 25% among the total energy consumption, which is much lower than the average level of the whole country.

✓ Beijing government requires gas totally replaces coal as energy for electricity and heating production till 2017.

✓ More clean energy and renewable energy will be used, such as solar and wind energy.

For example, CO2 emissions will decrease $490.20tCO_2$ -eq/a when the public lighting facilities are replaced by solar energy in this community.

♦ To insist on public transport priority

Because public transportation was chosen by most of residents in this community, the carbon emissions from transportation is much lower than other community.

However, it was reported that there were more than 43 families owning cars among 100 families in Beijing in 2012, so encouraging residents to take public transportation and improve the convenience of the public transportation are very important .

To Strengthen publicity and education on low-carbon life

✓ It is the most important in terms of building a low-carbon community to strengthen publicity and education on low-carbon life.

✓With the economic development and living level increasing, people will pursue the more comfortable and convenient life, which inevitably results in more energy and resource consumption.

For example, turning down the heat by 1° will result in 412t carbon emissions reduction in a common family.

